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1 Introduction and statement of results
In this talk, we’ll discuss in more detail the result of Kolyvagin stated below, which implies the
Birch and Swinnerton-Dyer conjecture for analytic rank 0 and 1. We won’t prove the strong
version of the statement, but we will essentially prove the weak version over the course of the
next few talks.

Our general setup is as follows: E is an elliptic curve defined over Q with conductor N ,
so that there exists a modular parametrization φ : X0(N) → E. Let K be the imaginary
quadratic field Q(

√
−D) of discriminant −D, chosen so that every prime dividing N splits in

K. (For simplicity, we’ll assume that D 6= 3 or 4, so that we don’t have extra units in OK .)
Then choosing a squarefree integer n relatively prime to N and D (as well as the prime p that
we’ll introduce soon) yields the Heegner points xn = (C/O,N−1n /O) ∈ X0(N), which we can
transport to yn ∈ E. These points are defined over the ring class field Kn of conductor n. In
particular, y1 is defined over the Hilbert class field K1, and its trace yK = TrK1/K(y1) (defined
using the group law of E) is defined over K.

Kolyvagin’s main theorem is as follows.

Theorem 1.1. Let E/Q be an elliptic curve, and assume that yK is non-torsion in E(K).
Then E(K) has rank 1 and X(E/K) is finite.

Notice that the Gross-Zagier formula relates this to BSD: by Gross-Zagier, we have yK non-
torsion ⇐⇒ hE(yK) 6= 0 ⇐⇒ L′(1, E/K) 6= 0.

This is hard (and isn’t proved in most references), so we’ll spend the next few weeks prov-
ing a weaker version:

Theorem 1.2. Let p be an odd prime such that Gal(Q(E[p])/Q) ∼= GL2(Fp), and assume that
p does not divide yK in E(K)/E(K)tors. Then E(K) has rank 1 and X(E/K) has trivial
p-torsion.

∗Notes for a talk given in Berkeley’s Student Heegner Point Seminar, supervised by Xinyi Yuan. Main
reference: Francesca Gala’s master’s thesis, Heegner points on X0(N).
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The following is a somewhat more accessible statement that we will use to prove the above:

Proposition 1.3. Let p be an odd prime such that Gal(Q(E[p])/Q) ∼= GL2(Fp), and assume
that p doesn’t divide yK in E(K)/E(K)tors. Then Selp(E/K) is cyclic, generated by δ(yK).

Let’s see why 1.3 implies 1.2. Recall the short exact sequence of Fp-vector spaces

0→ E(K)/pE(K)
δ→ Selp(E/K)→X(E/K)[p]→ 0. (1)

If 1.3 holds, then δ is both injective and surjective, so X(E/K)[p] is trivial. It also follows
that E(K)/pE(K) has dimension 1 over Fp, so E(K) has rank at most 1. But the rank is also
at least 1, because yK is a non-torsion point by hypothesis.

We’ll spend the next few talks proving 1.3. The high-level outline will be as follows:

1. Study the action of Gal(Q(E[p])/Q) on the p-torsion of E, and look at Kolyvagin primes.

2. Show that the Heegner points yn ∈ E(Kn) form an Euler system.

3. Construct a system of interesting cohomology classes c(n) ∈ H1(K,E[p]) = H1(GK , E(K)[p]).

4. Study the properties of c(n), including their behavior under complex conjugation and
their triviality in H1(Kv, E[p]).

5. Use facts from Galois cohomology theory (Tate local duality) to bound the order of
Selp(E/K) and complete the proof.

This talk will focus on items 1 and 2 above, as well as Serre’s open image theorem, which will
help us understand the hypothesis that Gal(Q(E[p])/Q) ∼= GL2(Fp) and why it makes sense to
assume it.

2 Galois action on torsion points

2.1 Serre’s open image theorem

For E an elliptic curve defined over a number field K, the absolute Galois group GK =
Gal(K/K) acts on (the K-points of) E by acting on coordinates, and as a result it acts on
the n-torsion points of E for each n. Recall that for ` prime, the `-adic Tate module T`(E) is
defined to be the inverse limit lim∞←nE[`n]. Since E[`n] is always a rank-2 free module over
Z /`n Z, it follows that T`(E) is a rank-2 free Z`-module, and that lim∞←nE[n] =

⊕
` T`E is a

rank-2 free module over
⊕

` Z` = Ẑ. Consequently, the action of GK on E yields a representa-
tion ρE : GK → Aut(lim∞←nE[n]) = GL2(Ẑ). Of course, since GL2(Ẑ) ∼=

∏
`GL2(Z`), we can

focus on a single prime if we like, and consider ρE,` : GK → GL2(Z`), or even reduce mod the
maximal ideal to obtain ρE,` : GK → GL2(F`).

Serre’s open image theorem tells us that if E doesn’t have complex multiplication, then the
total Galois representation ρE : GK → GL2(Ẑ) has an open image, when GL2(Ẑ) is given the
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profinite topology. In particular, since GL2(Ẑ) is profinite, this implies that ρE(GK) has finite
index in it. An equivalent statement1 is that (1) ρE,` : GK → GL2(Z`) has open image for all
`, and (2) it is surjective for almost all `.

To connect this to the hypotheses of Theorem 1.2 (with K = Q), notice that the open im-
age theorem implies that ρE,p : GQ → Aut(E[p]) = GL2(Fp) is surjective for almost all p. In
particular, GQ/ ker ρE,p is isomorphic to GL2(Fp). But ker ρE,p is the subgroup of GQ preserving
the coordinates of all the p-torsion points of E, so GQ/ ker ρE,p is just Gal(Q(E[p])/Q). Thus
it is reasonable to assume that Gal(Q(E[p])/Q) ∼= GL2(Fp) for our particular p, since (if E
doesn’t have complex multiplication) this is necessarily true for all but finitely many p.

2.2 Action of Gal(Q(E[p])/Q) on p-torsion

Proposition 2.1. The extension K(E[p])/K is unramified away from pN .

Proof. Let λ be a prime of K not above pN , and let γ be a prime of K(E[p]) lying over λ. Since
λ - N , E has good reduction over OKλ . There is a theorem that in the case of good reduction,
the prime-to-` torsion of E over OKλ injects into that of the reduction Ẽ over Fλ. Now we can
view an element g of the inertia group as an automorphism of K(E[p])γ/Kλ fixing the residue
field Fγ /Fλ. But if g fixes Fγ, then it fixes Ẽ(Fγ), so it fixes E[p] and therefore is trivial. It
follows that Iγ/λ is trivial, so the extension is unramified over λ.

Definition 2.2. Let Frob` denote the conjugacy class in Gal(K(E[p])/Q) containing the Frobe-
nius elements for Gal(Fγ /F`) for every γ over `. We say that ` is a Kolyvagin prime if complex
conjugation, τ , belongs to Frob`.

Notice that the Chebotarev density theorem implies that there are infinitely many Kolyvagin
primes. Also notice that if ` is a Kolyvagin prime, then [Fγ : F`] = 2 for all primes γ|`; that is,
the inertia degree is 2. From now on, we will always assume that ` is a Kolyvagin prime.

Proposition 2.3. Let ` be a Kolyvagin prime, and define a` by `+ 1− a` = |Ẽ(F`)|. Then we
have a` ≡ `+ 1 ≡ 0 (mod p).

Proof. If we let GK act on E[p], then complex conjugation has characteristic polynomial x2−1,
and any element of Frob(`) has characteristic polynomial x2 − a`x + `. (Recall what the
Weil conjectures say about elliptic curves: the characteristic polynomial of Frob(`) on E[p] is
(x − α)(x − α) where |α| =

√
`, and |E(F`n)| = `n + 1 + αn + αn for all n. Here, a` = α + α,

and ` = αα.) If ` is a Kolyvagin prime, these are congruent mod p, so a` and ` + 1 are both
divisible by p.

Proposition 2.4. Let Ẽ(Fλ)[p]± be the +1 and −1 eigenspaces of complex conjugation acting
on Ẽ(Fλ). Then each is isomorphic to Z /pZ, and Ẽ(Fλ) is their direct sum.

Proof. Since Ẽ(Fλ)[p]+ is just Ẽ(F`), its order is ` + 1 − a` ≡ 0 (mod p). On the other
hand, Ẽ(Fλ)[p]− is the kernel of τ + 1 = Fr`+1. This can be shown to be congruent to
Tr(Fr`) + det(Fr`) + 1 ≡ a` + `+ 1 ≡ 0 mod p.

1See the second page of Serre’s paper, “Propriétés galoisiennes des points d’ordre fini des courbes elliptiques”,
available online.
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3 Euler systems
Historical anecdote: you may have heard of Euler systems before in the context of Wiles’s first
(incomplete) proof of Fermat’s Last Theorem. The gap in the original proof, discovered by
Nick Katz, was (to the best of my understanding) that Wiles asserted something was an Euler
system, but it wasn’t. This led to an incorrect bound on the order of a Selmer group, and
ultimately Wiles and Taylor spent almost a year filling the gap. After today, you will not make
this mistake.

Now we’re going to look more carefully at the collection of Heegner points yn ∈ E(Kn), as
n varies. Recall our standing assumptions: n is squarefree and coprime to NDp, and every
`|n is a Kolyvagin prime. For `|n, set m = n/`. Let Gn denote Gal(Kn/K1). Some nice
facts about ring class fields: K` and Km are disjoint over K1, giving us G` = Gal(Kn/Km)
and Gm = Gal(Kn/K`) and thus Gn

∼= G` × Gm, and in fact ∼=
∏

`|nG`. We also have
Gn = (OK/nOK)×/(Z /nZ)× in general, and in particular G` = F×`2 /F

×
` , which is cyclic of

order `+ 1.

We’re now ready to state and prove the Euler system properties.

Definition and proposition 3.1. A family of elements yn ∈ E(Kn), indexed by the integers n
with the properties above, forms an Euler system if the following compatibility conditions hold:

1. Tr` yn = a` ·ym ∈ E(Km), where Tr` denotes the sum of the G`-conjugates under the group
law of E.

2. For each prime λn over ` in Kn, letting λm be the prime under it in Km, we have yn ≡
Frob(λm)ym (mod λn).

The Heegner points yn ∈ E(Kn) form an Euler system.

Proof. (Idea.) For (1), write yn as φ(xn), where φ : X0(N)→ E is the modular parametrization,
and use facts about the Hecke operators T`. For (2), do all your calculations on X0(N) instead
of E, proving that xn ≡ Frob(λm)xm in Fλn .

Remark 3.2. In general, an Euler system may be somewhat different from this. Often an Euler
system consists of elements cF of the Galois cohomology groups H1(F, T`E) indexed by fields F
containing a given number field K. Here, of course, we can view our xn’s as being indexed by the
fields Kn instead of the integers n, but we’re also looking at elements in E(Kn) = H0(Kn, E(K))
rather than H1(Kn, T`E). So it seems that the notion of an Euler system is a fairly general
one, and really just means a family of elements satisfying compatibility conditions similar to
the ones above.
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